반응형

머신러닝 모델을 해석하는 과정에서 중요한 질문 중 하나는, ‘어떤 feature가 예측에 가장 큰 영향을 미치는가?’라는 점입니다. 이 질문에 답하기 위해 feature의 중요도(feature importance)기여도(feature contribution)를 측정하는 다양한 방법이 사용됩니다. 이 글에서는 feature란 무엇인지부터 시작해, feature의 중요도 및 기여도를 평가하는 대표적인 방법들을 소개하고, 실제 사용 예시도 함께 설명하겠습니다.


1. Feature란 무엇인가?

Feature는 머신러닝 모델이 학습할 때 사용하는 데이터의 특성(속성)을 의미합니다. 각 feature는 데이터의 독립 변수를 나타내며, 모델이 종속 변수(타겟)를 예측하는 데 필요한 정보입니다. 예를 들어, 집값 예측 모델에서는 집의 크기, 위치, 층수 등이 feature에 해당합니다.

Feature의 예시:

  • 집값 예측 모델의 feature:
    • 집의 크기 (Size)
    • 방 개수 (Number of Rooms)
    • 위치 (Location)
    • 건축 연도 (Year Built)
    • 거리 (Distance to City Center)

이러한 feature들이 타겟 변수(종속 변수)인 집값을 예측하는 데 어떤 영향을 미치는지 분석하는 과정에서, feature의 중요도기여도를 평가하게 됩니다.


2. Feature Importance와 Feature Contribution의 차이

Feature Importance는 각 feature가 모델 예측에 얼마나 중요한 역할을 하는지 전반적으로 평가한 값입니다. Feature Contribution개별 예측에 대해 각 feature가 얼마나 기여했는지를 평가합니다.

  • Feature Importance: 모델이 학습한 전체 데이터에 대해 각 feature가 얼마나 자주 사용되고 중요한지 평가.
  • Feature Contribution: 개별 예측에서 각 feature가 예측값에 얼마나 기여했는지 설명.

이제 다양한 feature 중요도기여도 평가 방법을 살펴보겠습니다.


3. Feature 중요도와 기여도를 평가하는 다양한 방법

3.1. Permutation Importance (순열 중요도)

Permutation Importance는 각 feature의 값을 랜덤하게 섞은 후 모델 성능에 미치는 영향을 평가하는 방식입니다. feature의 값을 무작위로 섞어도 모델 성능이 크게 떨어지지 않으면, 해당 feature는 덜 중요하다고 판단합니다.

  • 장점: 모델에 독립적이고, 계산이 비교적 간단.
  • 단점: 계산 속도가 느릴 수 있으며, 상호작용이 강한 feature의 경우 단독 중요도를 낮게 평가할 수 있음.

예시 코드:

from sklearn.inspection import permutation_importance

result = permutation_importance(model, X, y, n_repeats=10, random_state=42)

3.2. Gini Importance (지니 중요도) 또는 Mean Decrease in Impurity (MDI)

Gini Importance는 트리 기반 모델에서 노드 분할을 통해 불순도가 얼마나 줄어드는지를 기반으로 feature의 중요도를 평가합니다. Random Forest 같은 모델에서 자주 사용됩니다.

  • 장점: 빠르게 계산 가능.
  • 단점: 상호작용을 충분히 반영하지 못할 수 있음.

예시 코드:

importances = model.feature_importances_

3.3. SHAP (Shapley Additive Explanations)

SHAP개별 예측에 대해 각 feature가 얼마나 기여했는지를 계산하는 방법으로, 상호작용을 포함하여 기여도를 분석할 수 있습니다. 협력 게임 이론에서 착안한 이 방법은, feature의 기여도를 정밀하게 설명할 수 있어 매우 유용합니다.

  • 장점: feature 간 상호작용을 정확하게 평가.
  • 단점: 계산 복잡도가 높음.

예시 코드:

import shap

explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
shap.summary_plot(shap_values, X)

3.4. LIME (Local Interpretable Model-Agnostic Explanations)

LIME은 모델의 개별 예측을 로컬 모델로 해석하는 방법입니다. 특정 예측에 대해 feature가 어떻게 기여했는지를 설명하며, 모델의 복잡한 내부 구조와 무관하게 사용할 수 있습니다.

  • 장점: 다양한 모델에 적용 가능.
  • 단점: 전반적인 중요도를 설명하지는 못하고, 특정 예측만 해석.

예시 코드:

import lime
from lime import lime_tabular

explainer = lime_tabular.LimeTabularExplainer(X_train.values, feature_names=feature_names, class_names=['class1', 'class2'], mode='classification')
explanation = explainer.explain_instance(X_test.iloc[0], model.predict_proba)
explanation.show_in_notebook()

3.5. Recursive Feature Elimination (RFE)

RFE는 feature를 하나씩 제거하면서 모델 성능에 미치는 영향을 평가하여, 중요하지 않은 feature를 제거해나가는 방식입니다.

  • 장점: 모델이 최적의 feature 집합을 찾도록 돕는 방법.
  • 단점: 계산 비용이 클 수 있음.

예시 코드:

from sklearn.feature_selection import RFE

selector = RFE(estimator=model, n_features_to_select=5, step=1)
selector = selector.fit(X, y)

3.6. Mutual Information (상호 정보량)

Mutual Information은 두 변수 간의 상호 의존성을 평가하는 방법으로, feature와 타겟 변수 간의 비선형적 관계를 포착할 수 있습니다.

  • 장점: 비선형 관계를 포착 가능.
  • 단점: 상호작용을 다루지는 못함.

예시 코드:

from sklearn.feature_selection import mutual_info_classif

mi = mutual_info_classif(X, y)

4. 실제 사용 예시

이제 위에서 설명한 방법들을 활용한 실제 예시를 살펴보겠습니다. 아래는 집값 예측 모델을 예로 들어, feature 중요도와 기여도를 평가하는 과정입니다.

데이터셋:

  • 타겟: 집값
  • Feature: 크기(Size), 방 개수(Number of Rooms), 위치(Location), 건축 연도(Year Built), 거리(Distance)
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

# 데이터 준비
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Random Forest 모델 학습
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Feature Importance 계산
importances = model.feature_importances_

# SHAP 값 계산
import shap
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

# 중요도 시각화
shap.summary_plot(shap_values, X_test)

5. 결론

모델 해석에서 feature 중요도기여도를 평가하는 방법은 매우 다양합니다. SHAP, LIME, Permutation Importance와 같은 기법들은 모델을 더 잘 이해하고, 각 feature가 예측에 얼마나 중요한지, 그리고 개별 예측에 어떤 영향을 미치는지 확인하는 데 유용한 도구들입니다. 머신러닝 모델의 성능을 향상시키기 위해서는 이러한 방법들을 적절히 활용하여 중요한 feature를 파악하고, 최적화된 모델을 설계하는 것이 중요합니다.

반응형
반응형

차원 축소는 고차원 데이터를 저차원으로 변환하여, 데이터를 처리하고 해석하기 쉽게 만드는 기법입니다. 이는 데이터의 복잡성을 줄이고, 분석 또는 시각화 성능을 향상시키는 데 주로 사용됩니다. 차원 축소는 데이터를 표현하는 데 필요한 특성 수를 줄이면서도 중요한 정보는 최대한 유지하려는 목표를 가지고 있습니다.

차원 축소는 특히 고차원 데이터(텍스트, 이미지, 시계열 데이터 등)를 다룰 때, 과적합 방지, 계산 효율성 향상, 시각화 등의 장점을 제공합니다.


주요 차원 축소 기법 및 수식 설명

1. PCA (Principal Component Analysis)

PCA는 데이터를 선형적으로 변환해 분산이 최대화되는 방향으로 차원을 축소하는 방법입니다.

  • 목표: 데이터의 분산을 최대한 보존하면서 차원 축소.
  • 수식:

  • 여기서, X는 데이터 행렬, λ는 고유값, w는 주성분(고유벡터)입니다. 고유값 분해를 통해 분산이 가장 큰 방향(주성분)을 찾아 차원을 축소합니다.
  • 사용 상황: 대규모 데이터에서 주된 패턴을 추출할 때, 데이터의 분산 구조를 이해하는 데 주로 사용됩니다.

2. t-SNE (t-Distributed Stochastic Neighbor Embedding)

t-SNE는 비선형 차원 축소 기법으로, 고차원의 데이터 포인트 간 인접 관계를 저차원에서도 유지하며 시각화하는 기법입니다.

  • 목표: 고차원에서 가까운 데이터 포인트를 저차원에서도 가깝게 유지.
  • 수식:

  • 는 고차원에서의 두 점 간의 유사성 확률입니다. t-SNE는 고차원과 저차원에서 유사성을 유지하는 방식으로 KL 다이버전스를 최소화합니다.
  • 사용 상황: 데이터의 복잡한 비선형 패턴을 시각화할 때, 특히 이미지나 텍스트 데이터에 적합.

3. UMAP (Uniform Manifold Approximation and Projection)

UMAP은 t-SNE와 유사한 비선형 차원 축소 기법으로, 고차원의 데이터 간 거리와 인접성을 저차원에서 보존합니다.

  • 목표: 고차원에서 가까운 데이터를 저차원에서도 유지하며, 구조적 패턴을 보존.
  • 수식:

  • 여기서 는 고차원에서의 데이터 간 관계를 나타내며, UMAP은 이를 저차원에서 거리로 변환해 클러스터 구조를 유지합니다.
  • 사용 상황: 대규모 데이터에서 빠르고 확장 가능한 차원 축소 및 시각화에 적합.

4. LDA (Linear Discriminant Analysis)

LDA분류 작업에서 클래스 간의 분산을 최대화하면서 차원을 축소하는 지도 학습 기법입니다.

  • 목표: 클래스 간 분산을 극대화하고, 클래스 내 분산을 최소화.
  • 수식:

  • 는 클래스 내 분산, SBS_B는 클래스 간 분산으로, 두 값을 최대화 및 최소화하는 방향으로 차원을 축소합니다.
  • 사용 상황: 레이블이 있는 데이터에서 클래스 간 구분이 중요한 경우.

5. Autoencoder

Autoencoder는 신경망 기반의 차원 축소 기법으로, 입력 데이터를 압축한 후 다시 복원하는 과정을 통해 중요한 특징을 학습합니다.

  • 목표: 고차원 데이터를 저차원으로 압축하면서 중요한 특징을 추출.
  • 수식:

  • 여기서 X는 입력 데이터, 는 복원된 데이터로, 원본과 복원된 데이터 간의 오차를 최소화하여 차원을 축소합니다.
  • 사용 상황: 비선형 구조를 가진 데이터에서 효과적이며, 이미지나 텍스트 데이터에서 자주 사용됩니다.

6. Factor Analysis

Factor Analysis는 관측된 변수들을 몇 개의 잠재 요인으로 설명하여 차원을 축소하는 통계 기법입니다.

  • 목표: 관측된 변수들을 잠재 변수들의 조합으로 표현.
  • 수식:

  • 는 관측 변수, Λ는 로딩 행렬, F는 잠재 변수로, 잠재 변수의 선형 조합으로 데이터를 설명합니다.
  • 사용 상황: 심리학, 사회과학 등에서 잠재 변수의 해석이 필요한 경우.

차원 축소의 필요성과 사용 상황

1. 고차원의 저주(Curse of Dimensionality):

고차원의 데이터는 차원 축소 없이 분석하거나 학습할 때, 과적합 또는 효율성 저하 문제를 겪기 쉽습니다. 차원 축소를 통해 이러한 문제를 해결하고, 데이터를 효율적으로 처리할 수 있습니다.

2. 시각화:

차원 축소는 2D 또는 3D 시각화를 통해 데이터의 군집화, 패턴 등을 확인할 수 있게 해줍니다. 특히 t-SNE나 UMAP은 복잡한 데이터의 구조적 관계를 시각화하는 데 매우 유용합니다.

3. 과적합 방지:

차원을 줄임으로써 모델이 불필요한 노이즈나 패턴을 학습하는 것을 방지하여, 모델의 일반화 성능을 높일 수 있습니다.

4. 계산 효율성 향상:

차원이 높은 데이터는 처리 비용이 매우 높아질 수 있지만, 차원 축소를 통해 계산 비용을 줄이고 모델 학습을 가속화할 수 있습니다.


결론

차원 축소는 고차원 데이터의 복잡성을 줄이고, 중요한 정보를 유지하면서도 효율적으로 데이터를 처리할 수 있게 해주는 중요한 기법입니다. 각 기법은 데이터의 특성에 맞춰 선택해야 하며, 이를 통해 과적합을 방지하고, 모델의 성능을 최적화할 수 있습니다.

반응형
반응형

클러스터링(Clustering)은 데이터를 유사성에 따라 여러 그룹(클러스터)으로 나누는 비지도 학습 기법입니다. 레이블 없이 데이터 내의 패턴을 파악하고, 이를 통해 자연스러운 그룹을 형성합니다. 주요 클러스터링 기법은 다음과 같습니다.


주요 클러스터링 방법들

1. K-Means

K-Means는 데이터를 K개의 클러스터로 나누고, 각 클러스터의 중심을 기준으로 데이터 포인트를 할당하는 알고리즘입니다. 반복적으로 클러스터 중심을 재계산하며 수렴할 때까지 수행됩니다.

  • 장점: 빠른 계산 속도, 대규모 데이터에도 적합.
  • 단점: 클러스터 개수(K)를 미리 지정해야 하며, 구형 클러스터에 적합.

2. DBSCAN

DBSCAN은 밀도 기반 클러스터링 방법으로, 밀도가 높은 지역을 클러스터로 형성하며, 밀도가 낮은 포인트는 노이즈로 간주합니다.

  • 장점: 클러스터 개수를 미리 알 필요 없고, 노이즈 처리 가능.
  • 단점: 밀도 차이가 큰 클러스터는 분리하기 어려움.

3. 계층적 클러스터링

계층적 클러스터링은 데이터를 병합적(아래에서 위로) 또는 분할적(위에서 아래로) 방식으로 계층적으로 클러스터링하는 방법입니다.

  • 장점: 덴드로그램을 통해 계층 구조를 분석할 수 있음.
  • 단점: 큰 데이터에서는 계산 비용이 큼.

4. 가우시안 혼합 모델 (GMM)

GMM은 각 클러스터가 가우시안 분포를 따르는 것으로 가정하고, 데이터를 확률적으로 클러스터링합니다.

  • 장점: 비구형 클러스터에 적합, 확률 기반 클러스터링 제공.
  • 단점: 클러스터 개수를 미리 지정해야 하고 초기화에 민감함.

5. K-Medoids

K-Means와 유사하지만, 중심점을 **실제 데이터 포인트(Medoid)**로 지정하는 방식입니다. 이는 이상치에 더 강합니다.

  • 장점: 이상치(outlier)에 강하며, 중심이 실제 데이터 포인트이므로 해석이 용이.
  • 단점: 계산 비용이 상대적으로 높음.

클러스터링 방법 비교

방법 특징 장점 단점
K-Means 데이터를 K개의 클러스터로 나눔 계산 속도가 빠름, 대규모 데이터에 적합 클러스터 개수(K)를 미리 지정해야 함, 구형 클러스터에만 적합
DBSCAN 밀도 기반 클러스터링, 노이즈 처리 가능 클러스터 개수를 몰라도 됨, 노이즈 데이터 처리 가능 밀도 차이가 큰 경우 성능 저하
계층적 클러스터링 병합적, 분할적 방식 모두 사용 가능 클러스터 개수 미리 알 필요 없음, 덴드로그램 제공 계산 비용이 큼
가우시안 혼합 모델(GMM) 각 클러스터를 가우시안 분포로 모델링 비구형 클러스터에 적합, 확률 기반 클러스터링 클러스터 개수를 지정해야 함, 초기화에 민감
K-Medoids K-Means와 유사하나, Medoid 사용 이상치에 강함, 중심이 실제 데이터 포인트 계산 비용이 높음

추가로 알아야 할 사항

1. 차원의 저주(Curse of Dimensionality):

차원이 높아질수록 데이터 간 거리가 증가해 클러스터링 성능이 저하될 수 있습니다. 차원이 높은 데이터에서는 차원 축소(Dimensionality Reduction) 기법을 사용하여 데이터의 중요한 정보를 유지하면서 차원을 줄이는 것이 중요합니다. 예를 들어, PCA 또는 t-SNE 같은 기법이 자주 사용됩니다.

2. 차원 축소와의 결합:

차원 축소 기법은 클러스터링을 더 효과적으로 수행할 수 있도록 지원합니다. PCA는 데이터를 선형적으로 변환해 차원을 축소하며, t-SNEUMAP은 비선형적 변환을 통해 데이터를 저차원 공간으로 시각화하여 클러스터링을 돕습니다.

3. 노이즈와 이상치 처리:

고차원 데이터나 복잡한 데이터셋에서는 **이상치(outliers)**가 클러스터링 성능에 영향을 미칠 수 있습니다. 특히, DBSCAN 같은 알고리즘은 노이즈 데이터를 잘 처리하지만, K-Means는 이상치에 민감할 수 있습니다. 적절한 노이즈 처리 방법과 함께 사용하는 것이 중요합니다.

4. 클러스터링 성능 평가:

클러스터링 알고리즘의 성능을 평가하는 지표로는 실루엣 계수(Silhouette Coefficient), 엘보 방법(Elbow Method), 군집 내 분산 등이 있습니다. 이러한 지표를 사용해 클러스터링 성능을 평가하고, 최적의 클러스터 수를 찾을 수 있습니다.

5. 초매개변수 최적화:

클러스터링 알고리즘의 성능은 **초매개변수(hyperparameters)**에 따라 크게 달라질 수 있습니다. 예를 들어, K-Means에서 K 값이나 DBSCAN의 반경 및 최소 이웃 수를 적절히 설정하는 것이 중요합니다. 이러한 값은 실험을 통해 최적화해야 합니다.


결론

다양한 클러스터링 기법은 데이터의 특성과 분석 목적에 따라 선택될 수 있습니다. 특히, 다차원 데이터의 경우 차원 축소 기법을 사용해 클러스터링 성능을 향상시키고, 노이즈와 이상치 처리에 유의해야 합니다. 클러스터링 알고리즘의 특성을 잘 이해하고, 초매개변수 최적화와 성능 평가를 통해 최적의 클러스터링 결과를 도출하는 것이 중요합니다.

반응형

'Data Science > machine learning' 카테고리의 다른 글

딥러닝이란  (3) 2024.09.28
차원 축소(Dimensionality Reduction)의 정의  (0) 2024.09.28
분류(Classification)란?  (2) 2024.09.27
회귀(Regression)의 정의  (3) 2024.09.27
머신러닝의 정의와 기초 개념  (1) 2024.09.26
반응형

분류(Classification)는 주어진 데이터를 미리 정의된 카테고리나 클래스로 나누는 작업입니다. 이 과정은 머신러닝의 지도 학습(Supervised Learning) 방식에 속하며, 입력 데이터와 그에 대한 정답(레이블)을 학습한 후 새로운 데이터를 분류하는 데 사용됩니다. 분류는 두 가지 주요 유형으로 나뉩니다:

  1. 이진 분류(Binary Classification): 두 가지 클래스로 분류하는 문제.
    • 예: 이메일이 스팸인지 아닌지 분류하는 문제.
  2. 다중 클래스 분류(Multi-class Classification): 세 가지 이상의 클래스로 분류하는 문제.
    • 예: 이미지가 개, 고양이, 자동차 중 하나로 분류되는 문제.

주요 분류 알고리즘

  1. 로지스틱 회귀(Logistic Regression):
    • 이진 분류를 위한 확률 기반 모델로, 데이터가 특정 클래스에 속할 확률을 예측합니다.
    • 시그모이드 함수를 사용하여 출력 값을 0과 1 사이의 값으로 변환하여 클래스 레이블을 예측합니다.
    • 예시: 이메일이 스팸인지 아닌지 이진 분류.
  2. 서포트 벡터 머신(SVM, Support Vector Machine):
    • 최대 마진 분류기로, 두 클래스 사이의 경계를 가장 멀리 떨어진 데이터 포인트 사이에 그립니다.
    • 고차원 공간에서도 분류할 수 있는 커널 기법을 사용하여 비선형 데이터를 다룹니다.
    • 예시: 얼굴 인식, 텍스트 분류.
  3. k-최근접 이웃(K-NN, K-Nearest Neighbors):
    • 새로운 데이터 포인트가 입력되면, 가장 가까운 k개의 이웃을 참조하여 다수결로 분류합니다.
    • 단순하고 직관적인 방법이지만, 큰 데이터셋에서는 계산 비용이 높아질 수 있습니다.
    • 예시: 이미지 분류.
  4. 결정 트리(Decision Tree):
    • 데이터를 특성(feature)에 따라 나누어 트리 구조를 형성하여 분류합니다.
    • 각 노드는 데이터의 특정 속성에 따라 분리되며, 최종 노드는 특정 클래스에 대한 예측 값을 제공합니다.
    • 예시: 질병 진단에서 환자의 증상을 기반으로 질병 예측.
  5. 랜덤 포레스트(Random Forest):
    • 다수의 결정 트리를 학습한 후 그 결과를 종합하여 분류하는 앙상블 기법입니다.
    • 개별 트리들이 과적합에 빠질 수 있지만, 랜덤 포레스트는 이를 방지하면서 더 높은 정확도를 제공합니다.
    • 예시: 금융 사기 탐지.
  6. 나이브 베이즈(Naive Bayes):

나이브 베이즈(Naive Bayes)조건부 확률을 기반으로 한 분류 알고리즘입니다. 모든 특성(feature) 간의 독립성을 가정하고, 베이즈 정리를 활용해 데이터를 분류합니다. 나이브(naive)라는 이름은 각 특성이 독립적이라는 가정에서 유래합니다.

베이즈 정리

베이즈 정리는 다음과 같이 표현됩니다:

여기서:

  • P(A∣B)사후 확률로, 사건 B가 발생한 후 사건 A가 일어날 확률입니다.
  • P(B∣A)우도로, 사건 A가 발생한 경우 사건 B가 일어날 확률입니다.
  • P(A)사전 확률로, 사건 A가 일어날 확률입니다.
  • P(B)는 사건 B가 일어날 확률입니다.

나이브 베이즈 알고리즘에서의 사용

  • P(A)는 특정 클래스가 나타날 확률(사전 확률).
  • P(B|A)는 특정 클래스일 때 데이터의 특성(우도).
  • P(B)는 모든 클래스에서 데이터의 특성(증거).

이 수식을 각 클래스에 대해 계산한 후, 사후 확률이 가장 높은 클래스를 선택하여 분류합니다.

베이즈 정리에 맞는 데이터 분포

나이브 베이즈는 각 특성 간의 독립성이 유지되는 데이터를 다룰 때 성능이 높습니다. 베르누이 분포, 다항 분포 또는 가우시안 분포의 특성을 가진 데이터에서 잘 작동합니다.

  • 가우시안 나이브 베이즈(Gaussian Naive Bayes): 연속적인 데이터에서 정규분포를 따르는 특성들을 다룹니다.
  • 베르누이 나이브 베이즈(Bernoulli Naive Bayes): 이진 데이터를 처리할 때 적합.
  • 다항 나이브 베이즈(Multinomial Naive Bayes): 텍스트 데이터처럼 특성이 빈도에 따라 분포할 때 사용합니다.

주로 사용되는 상황

나이브 베이즈는 계산 속도가 빠르고 효율적이기 때문에, 텍스트 분류자연어 처리(NLP)에서 많이 사용됩니다. 또한 특성 간의 상관관계가 크지 않거나, 클래스 간의 분포가 단순할 때 매우 유용합니다.

  • 스팸 필터링: 이메일의 단어나 문장의 빈도를 분석해 스팸 여부를 예측.
  • 감정 분석: 텍스트의 긍정/부정을 예측.
  • 질병 진단: 증상을 기반으로 질병의 가능성을 추정.

나이브 베이즈는 특성 간 독립성을 가정하지만, 실제 데이터에서 이 가정이 완전히 맞지 않더라도 여전히 좋은 성능을 보이는 경우가 많습니다.

 

분류의 평가 지표

  1. 정확도(Accuracy):
    • 전체 예측에서 맞춘 비율.
    • 문제점: 데이터가 불균형할 경우, 정확도만으로 성능을 판단하기 어려울 수 있습니다.
  2. 정밀도(Precision):
    • 모델이 양성으로 예측한 것 중 실제 양성의 비율.
    • 예시: 스팸 필터에서 실제 스팸으로 분류된 이메일 중에서 진짜 스팸 이메일의 비율.
  3. 재현율(Recall):
    • 실제 양성 중에서 모델이 양성으로 예측한 비율.
    • 예시: 암 진단에서 실제 암 환자를 암으로 정확히 예측한 비율.
  4. F1 Score:
    • 정밀도와 재현율의 조화 평균으로, 불균형 데이터셋에서 유용하게 사용됩니다.
    • 예시: 스팸 필터에서 정밀도와 재현율 간 균형을 맞추기 위한 지표.
  5. ROC-AUC:
    • ROC 곡선(True Positive Rate 대 False Positive Rate)의 아래 면적을 측정하여 분류기의 성능을 평가합니다.
    • 1에 가까울수록 성능이 좋은 모델을 의미합니다.
    • 예시: 질병 진단에서 암 환자와 비암 환자를 구분하는 모델의 성능 평가.

분류의 실생활 활용 사례

  1. 이메일 스팸 필터링: 이메일을 분석하여 스팸인지 아닌지를 분류.
  2. 질병 진단: 환자의 증상과 의료 기록을 기반으로 질병 여부를 예측.
  3. 신용 점수 예측: 고객의 금융 기록을 기반으로 대출 상환 가능성을 예측.
  4. 이미지 분류: 개, 고양이, 자동차와 같은 다중 클래스 이미지를 분류.
  5. 텍스트 감정 분석: 소셜 미디어 게시글의 긍정/부정 감정을 분류.

결론

분류(Classification)는 지도 학습의 중요한 부분으로, 여러 가지 분류 알고리즘을 통해 데이터를 특정 카테고리로 구분하는 작업입니다. 각각의 알고리즘은 문제의 특성에 따라 선택될 수 있으며, 정밀도, 재현율, F1 Score, ROC-AUC와 같은 다양한 성능 평가 지표를 통해 모델의 품질을 평가합니다.

반응형
반응형

머신러닝(Machine Learning)명시적인 프로그래밍 없이 데이터를 기반으로 학습하고, 그로부터 패턴을 찾아내어 예측이나 결정을 내리는 컴퓨터 시스템의 한 분야입니다. 머신러닝은 데이터로부터 학습하는 모델을 만들어, 새로운 데이터에 대해 적절한 결과를 예측할 수 있도록 합니다.

머신러닝의 세 가지 주요 분류:

  1. 지도 학습(Supervised Learning):
    • 정답(레이블)이 포함된 데이터셋을 바탕으로 모델을 학습하는 방식입니다. 데이터에 주어진 입력(Input)과 정답(Output) 간의 관계를 학습한 후, 새로운 입력에 대한 예측을 수행합니다.
    • 주요 알고리즘: 선형 회귀(Linear Regression), 로지스틱 회귀(Logistic Regression), 서포트 벡터 머신(SVM), 신경망(Neural Networks).

2024.09.27 - [Data Science/machine learning] - 회귀(Regression)의 정의

 

회귀(Regression)의 정의

회귀(Regression)는 독립 변수(특성)와 종속 변수(목표 값) 간의 관계를 모델링하여 연속적인 값을 예측하는 머신러닝 기법입니다. 회귀 분석은 입력 데이터와 출력 값 사이의 관계를 수학적으로 표

bgreat.tistory.com

2024.09.27 - [Data Science/machine learning] - 분류(Classification)란?

 

분류(Classification)란?

분류(Classification)는 주어진 데이터를 미리 정의된 카테고리나 클래스로 나누는 작업입니다. 이 과정은 머신러닝의 지도 학습(Supervised Learning) 방식에 속하며, 입력 데이터와 그에 대한 정답(레이

bgreat.tistory.com

 

  1. 비지도 학습(Unsupervised Learning):
    • 정답이 없는 데이터를 사용해 패턴이나 구조를 찾는 방식입니다. 주로 데이터의 군집을 찾아내거나 데이터를 요약하는 데 사용됩니다.
    • 주요 알고리즘: K-평균 클러스터링(K-Means Clustering), 주성분 분석(PCA), 가우시안 혼합 모델(GMM).

2024.09.28 - [Data Science/machine learning] - 클러스터링의 정의와 주요 방법들

 

클러스터링의 정의와 주요 방법들

클러스터링(Clustering)은 데이터를 유사성에 따라 여러 그룹(클러스터)으로 나누는 비지도 학습 기법입니다. 레이블 없이 데이터 내의 패턴을 파악하고, 이를 통해 자연스러운 그룹을 형성합니다.

bgreat.tistory.com

2024.09.28 - [Data Science/machine learning] - 차원 축소(Dimensionality Reduction)의 정의

 

차원 축소(Dimensionality Reduction)의 정의

차원 축소는 고차원 데이터를 저차원으로 변환하여, 데이터를 처리하고 해석하기 쉽게 만드는 기법입니다. 이는 데이터의 복잡성을 줄이고, 분석 또는 시각화 성능을 향상시키는 데 주로 사용

bgreat.tistory.com

 

  1. 강화 학습(Reinforcement Learning):
    • 에이전트가 환경과 상호작용하며 보상(Reward)을 최대화하는 방식으로 학습하는 알고리즘입니다. 에이전트는 시행착오를 통해 더 나은 행동을 찾아내는 방식으로 학습합니다.
    • 주요 알고리즘: Q-러닝(Q-Learning), 정책 경사법(Policy Gradient).

 


머신러닝의 응용 분야

머신러닝은 다양한 산업과 분야에서 폭넓게 사용됩니다. 예를 들어, 다음과 같은 분야에서 머신러닝이 큰 기여를 하고 있습니다:

  • 의료: 질병 예측 및 진단, 유전자 분석, 의료 영상 처리.
  • 금융: 사기 탐지, 신용 평가, 주식 시장 예측.
  • 자율주행: 차량 제어, 객체 인식.
  • 자연어 처리(NLP): 음성 인식, 언어 번역, 챗봇.

이외에도 물류, 제조, 마케팅 등 다양한 산업에서 머신러닝을 활용한 자동화와 최적화가 이루어지고 있습니다.


머신러닝 모델 평가 방법

머신러닝 모델의 성능을 평가하는 것은 모델 선택과 개선에 있어 매우 중요한 과정입니다. 주요 평가 지표로는 다음과 같은 것들이 있습니다:

  • 정확도(Accuracy): 전체 예측에서 맞춘 비율을 측정합니다. 단순하지만, 불균형 데이터에서는 신뢰성이 떨어질 수 있습니다.
  • 정밀도(Precision)재현율(Recall): 정밀도는 모델이 True Positive로 예측한 것 중 실제로 맞은 비율을, 재현율은 전체 True Positive 중 모델이 얼마나 많이 맞혔는지를 평가합니다.
  • F1 Score: 정밀도와 재현율의 조화를 측정한 지표로, 두 지표 간의 균형이 중요할 때 사용됩니다.
  • AUC-ROC Curve: 분류 모델에서의 성능을 평가하기 위해 사용되며, 모델의 True Positive와 False Positive 간의 트레이드오프를 시각적으로 보여줍니다.

또한, 모델의 일반화 성능을 측정하기 위해 교차 검증(Cross Validation)을 사용하는 것이 좋습니다. 데이터를 여러 번 분할하여 모델을 훈련하고 테스트함으로써, 데이터 샘플의 변동성을 반영한 보다 안정적인 성능 평가가 가능합니다.


머신러닝의 한계 및 도전 과제

머신러닝은 강력한 도구이지만, 여전히 몇 가지 한계와 도전 과제를 안고 있습니다.

  1. 데이터 품질: 머신러닝 모델의 성능은 주어진 데이터의 품질에 크게 의존합니다. 결측 데이터, 이상치 또는 잘못된 레이블이 포함된 데이터는 모델의 성능을 크게 저하시킬 수 있으며, 이를 처리하기 위한 데이터 전처리 과정이 필수적입니다.
  2. 과적합(Overfitting): 모델이 학습 데이터에 너무 집중하여, 새로운 데이터에 대한 예측 성능이 떨어지는 문제입니다. 과적합을 방지하기 위해서는 정규화(Regularization), 조기 종료(Early Stopping), 드롭아웃(Dropout) 등의 기법을 사용해야 합니다.
  3. 해석 가능성(Interpretability): 딥러닝과 같은 복잡한 모델은 높은 예측 성능을 제공하지만, 그 과정이 블랙박스처럼 작동하여 내부 동작을 이해하기 어려울 수 있습니다. 이 때문에, 모델 해석 가능성을 높이기 위한 연구가 활발히 진행되고 있으며, SHAP(Shapley Additive Explanations)나 LIME(Local Interpretable Model-agnostic Explanations) 같은 도구가 활용되고 있습니다.
  4. 윤리적 문제: 머신러닝 모델은 학습한 데이터에 내재된 편향(Bias)을 그대로 반영할 수 있으며, 이는 특정 집단에 대한 차별을 유발할 수 있습니다. 공정하고 투명한 머신러닝 시스템을 구축하기 위해 윤리적 기준이 요구됩니다.

머신러닝과 딥러닝의 차이점

머신러닝딥러닝은 흔히 혼용되지만, 두 개념에는 중요한 차이가 있습니다.

  1. 특징 추출(Feature Extraction):
    • 머신러닝에서는 사람이 데이터를 분석하여 직접 특징을 추출한 후, 그 데이터를 모델에 학습시킵니다.
    • 딥러닝은 인공 신경망을 사용하여 데이터를 처리하는 과정에서 자동으로 특징을 추출합니다. 특히, 컨볼루션 신경망(CNN)순환 신경망(RNN) 같은 모델은 이미지나 시계열 데이터에서 중요한 패턴을 자동으로 학습할 수 있습니다.
  2. 컴퓨팅 자원:
    • 딥러닝은 복잡한 네트워크 구조를 가지며, 대규모 데이터를 처리하기 때문에 고성능의 GPU나 TPU와 같은 특수한 하드웨어가 필요합니다.
    • 머신러닝 모델은 일반적으로 딥러닝보다 계산 자원이 덜 필요하며, 작은 데이터셋에서도 잘 작동할 수 있습니다.

EM 알고리즘: 점진적 학습이 필요한 모델과 그렇지 않은 모델

EM(Expectation-Maximization) 알고리즘은 불완전한 데이터나 숨겨진 변수가 있는 확률 모델에서 파라미터를 추정하기 위해 사용됩니다. 이 알고리즘은 점진적인 학습 과정을 통해 모델을 최적화하는데, 머신러닝에서 모든 알고리즘이 EM 알고리즘처럼 점진적 학습을 요구하지는 않습니다.

점진적 학습이 필요한 모델

  • 확률 모델: 확률 기반 모델에서는 데이터를 완벽하게 설명하기 위한 파라미터를 찾기 위해 반복적으로 모델을 업데이트할 필요가 있습니다. EM 알고리즘이 이러한 과정에서 대표적인 알고리즘입니다.
  • 가우시안 혼합 모델(GMM): GMM에서는 각 데이터가 어느 가우시안 분포에 속하는지 알 수 없기 때문에, EM 알고리즘을 사용해 점진적으로 각 데이터의 클러스터 할당 확률을 추정합니다.
  • HMM(은닉 마르코프 모델): 음성 인식이나 자연어 처리에서 사용되며, 상태가 관측되지 않는 경우가 많아 EM 알고리즘을 사용해 점진적으로 상태 전환 확률을 학습합니다.

점진적 학습이 필요하지 않은 모델

  • 결정 트리(Decision Tree): 결정 트리는 한 번 학습이 완료되면 끝나는 모델입니다. 데이터의 분할 기준을 찾고, 그에 맞춰 트리를 형성한 후 더 이상 점진적 학습이 필요하지 않습니다.
  • k-최근접 이웃(K-Nearest Neighbors, KNN): KNN은 학습 과정을 필요로 하지 않고, 새로운 데이터가 들어왔을 때 그 데이터를 기반으로 가장 가까운 이웃 데이터로부터 결과를 추정하는 모델입니다.
  • 선형 회귀(Linear Regression): 선형 회귀는 모델이 한 번의 최적화로 파라미터를 학습하면 끝나므로, 점진적 학습이 필요하지 않습니다.

점진적 학습이 필요하지 않은 경우와 부트스트래핑의 필요성

점진적 학습이 필요하지 않은 모델, 특히 결정 트리(Decision Tree)와 같은 모델들은 데이터의 분할 기준을 한 번 설정하면 학습이 종료됩니다. 이런 모델들은 반복적인 학습을 통해 점진적으로 개선되지 않기 때문에, 모델의 성능이 주어진 학습 데이터에 크게 의존하게 됩니다. 이로 인해 특정 데이터에 과적합(Overfitting)될 위험이 커질 수 있습니다.

따라서, 점진적 학습이 없는 모델들은 앙상블 학습 기법 중 하나인 부트스트래핑(Bootstrap)을 통해 더 안정적이고 일반화된 성능을 얻을 수 있습니다. 배깅(Bagging)과 같은 앙상블 기법에서 부트스트래핑은 매우 중요한 역할을 하며, 데이터에 대한 의존도를 줄여 모델이 더 다양한 데이터 샘플을 학습하도록 돕습니다.

부트스트래핑은 데이터 샘플을 복원 추출하여 여러 개의 학습 데이터셋을 만드는 기법입니다. 이 과정을 통해 각 모델은 원본 데이터와 약간 다른 형태의 데이터를 학습하게 되어, 개별 모델의 과적합을 방지하고, 전체 모델의 예측 성능을 높이는 데 기여합니다.


앙상블 학습: 배깅(Bagging), 보팅(Voting), 부스팅(Boosting)

머신러닝에서 성능을 높이기 위한 방법 중 하나는 앙상블 학습(Ensemble Learning)입니다. 여러 모델을 결합하여 더 나은 성능을 내는 이 방법에는 배깅(Bagging), 보팅(Voting), 부스팅(Boosting)이라는 세 가지 주요 기법이 있습니다. 각 방법은 학습 방식과 모델 결합 방식에서 차이가 있지만, 개별 모델보다 더 높은 성능을 기대할 수 있습니다.

1. 배깅(Bagging)

배깅은 부트스트랩(Bootstrap) 기법을 활용하여 데이터를 여러 개의 샘플로 나누고, 그 샘플을 바탕으로 각각의 모델을 독립적으로 학습시킨 후, 그 결과를 결합하는 방식입니다. 배깅의 대표적인 예로는 랜덤 포레스트(Random Forest)가 있습니다.

2. 보팅(Voting)

보팅은 여러 모델을 학습한 후, 그 결과를 종합해 최종 예측을 내리는 방식입니다. 보팅은 하드 보팅(Hard Voting)소프트 보팅(Soft Voting)으로 나뉩니다.

3. 부스팅(Boosting)

부스팅은 여러 약한 모델(Weak Learner)을 순차적으로 학습시키며, 이전 모델이 틀린 데이터를 다음 모델이 더 잘 학습할 수 있도록 보완하는 방식입니다.


배깅 vs 보팅 vs 부스팅

 

특징 배깅(Bagging) 보팅(Voting) 부스팅(Boosting)
학습 과정 모델들이 독립적으로 학습됨 모델들이 독립적으로 학습됨 모델들이 순차적으로 학습되며, 이전 모델의 실수를 보완
모델 종류 같은 모델(주로 결정 트리)을 사용 서로 다른 모델을 결합할 수 있음 약한 모델들을 결합
오류 수정 개별 모델 간 오류 수정 과정 없음 모델 독립적, 수정 과정 없음 이전 모델의 오류를 다음 모델이 보완
병렬 처리 가능성 모델들이 독립적으로 학습되므로 병렬 처리 가능 모델들이 독립적으로 학습되므로 병렬 처리 가능 순차적 학습으로 병렬 처리 어려움
과적합 방지 과적합 방지에 유리 다수결 또는 확률 평균을 사용해 과적합 방지 과적합 가능성 있지만, 규제를 통해 해결 가능
대표 알고리즘 랜덤 포레스트(Random Forest) 하드/소프트 보팅 AdaBoost, Gradient Boosting

결론

머신러닝은 데이터를 기반으로 모델이 학습하고, 이를 통해 새로운 데이터를 예측하는 강력한 도구입니다. EM 알고리즘은 점진적인 학습이 필요한 모델에서 잠재 변수를 추정하는 역할을 하며, 이와 달리 학습이 한 번에 이루어지는 모델들도 있습니다. 이러한 점진적 학습이 없는 모델들은 과적합의 위험이 크므로, 부트스트래핑(Bootstrap)과 같은 기법을 사용해 데이터 샘플을 다양화하여 앙상블 학습을 적용하는 것이 효과적입니다. 배깅, 보팅, 부스팅은 각각의 모델을 결합하여 성능을 극대화할 수 있는 강력한 방법이며, 문제와 데이터의 특성에 따라 적절한 방법을 선택하여 더 높은 성능을 기대할 수 있습니다.

반응형
반응형

Kaggle이란 데이터 과학자와 머신 러닝 사용자의 스킬과 정보 공유를 위해 만들어진 커뮤니티이다.

 

 

주기적으로 열리는 Competetion을 통해 상금과 명성을 얻을 수도 있고 

Courses 에서 학습을 할 수도 있다.

상당히 공신력 있는 커뮤니티라서 입상 실적은 ML/AL 경력으로 인정해주는 회사도 있다.

Kaggle korea 페이스북 커뮤니티도 있으니 참고하면 좋을 듯 하다.

https://www.facebook.com/groups/KaggleKoreaOpenGroup/

반응형

+ Recent posts